The Role of Moisture in the Dynamics and Energetics of Turbulent Baroclinic Eddies
نویسندگان
چکیده
The effects of moisture on nonlinear baroclinic eddies are examined in the context of a horizontally homogeneous two-layer quasigeostrophic model. Using an explicit equation for moisture and a simple parameterization of latent heat release, the present study focuses on how moisture affects the statistically steady state of a baroclinically unstable flow. It is shown that, when latent heating is weak, the flow is dominated by jets and baroclinic waves, just as in the corresponding dry model. In this regime, the concept of an effective static stability can be used, which allows one to interpret some aspects of the moist simulations in terms of an equivalent dry model. It is found that a useful way of diagnosing the effective static stability is by relating it to the eddy fluxes of moisture and moist potential vorticity; no a priori theory for its value is presented here. As the strength of latent heating is increased, the flow rather suddenly becomes vortex dominated, with an asymmetry between strong low-level cyclones and weak anticyclones that has no analog in the dry model. It is argued that this asymmetry develops because of a correlation between low-level vorticity and moisture that results from the correlated horizontal transports of moisture and vorticity. The energetics of the simulations and the efficiency of energy production by latent heat release are discussed.
منابع مشابه
Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملA non-oscillatory balanced scheme for an idealized tropical climate model Part II: Nonlinear coupling and moisture effects
We use the non-oscillatory balanced numerical scheme developed in Part I to track the dynamics of a dry highly nonlinear barotropic/baroclinic coupled solitary wave, as introduced by Biello and Majda (2004), and of the moisture fronts of Frierson et al. (2004) in the presence of dry gravity waves, a barotropic trade wind, and the beta effect. It is demonstrated that, for the barotropic/baroclin...
متن کاملCovariate-based stochastic parameterization of baroclinic ocean eddies
Abstract: In this study we investigate a covariate-based stochastic approach to parameterize unresolved turbulent processes within a standard model of the idealised, wind-driven ocean circulation. We focus on vertical instead of horizontal coarse-graining, such that we avoid the subtle difficulties of horizontal coarsegraining. The corresponding eddy forcing is uniquely defined and has a clear ...
متن کاملThe Perturbation Flow Field Associated With Passage of Turbulent Spot (RESEARCH NOTE)
The flow field associated with the passage of the turbulent spot in a 3–D duct with streamline divergence under zero pressure gradients was investigated and displayed as contour plots of the velocity perturbation in plan and elevation view of the spot. It suggests that, streamline divergence has no strong effect on the internal structure of the spot and eddies and their propagation in the downs...
متن کاملHadley Cell Dynamics in a Primitive Equation Model. Part II: Nonaxisymmetric Flow
This paper investigates the effect of baroclinic eddies on the structure of the Hadley cell. Self-consistent calculations of both axisymmetric and nonaxisymmetric circulations allow an unambiguous estimate of baroclinic eddy effects on the structure of the Hadley cell. Furthermore, a diagnostic analysis allows us to partition the influence of baroclinic eddies into ‘‘direct’’ and ‘‘indirect’’ r...
متن کامل